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Abstract
Additive manufacturing by laser sintering is able to produce high resolution metal constructs for
orthopedic and dental implants. In this study, we used a human trabecular bone template to
design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering.
Characterization of constructs revealed interconnected porosities ranging from 15–70% with
compressive moduli of 2579–3693MPa. These constructs with macro porosity were further
surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to
enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when
grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early
differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation
marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic
proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the
highest porosity and surface modification supported the greatest osteoblast differentiation and
local factor production. These results indicate that additively manufactured 3D porous constructs
mimicking human trabecular bone and produced with additional surface treatment can be
customized for increased osteoblast response. Increased factors for osteoblast maturation and
differentiation on high porosity constructs suggest the enhanced performance of these surfaces
for increasing osseointegration in vivo.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Over two million dental implants are placed annually, and
over four million hip and knee replacement surgeries are
expected by the year 2030 [1, 2]. The orthopedic implant
market is projected to exceed $46 billion by the year 2017, in
part due to an increasing number of elderly patients as well as
increased quality of life expectations of younger patients [3].
Titanium and its alloys are still widely used in dental and
orthopedic metal implants, based on the ability of bone to
form in tight apposition to implants fabricated from these
materials [4–6]. Titanium and titanium-aluminum-vanadium
(Ti6Al4V) have a naturally occurring passive oxide layer on
their surface that is biologically preferable and resists corro-
sion, while still maintaining strong mechanical properties and
a high strength to weight ratio [7].

Implant surface roughness is one factor that has been
shown to successfully increase cell response in vitro and
osseointegration in vivo, and micro-rough surfaces are cur-
rently used as the industry standard in dental and many bone-
interfacing orthopedic implants [8, 9]. Previous studies in our
lab confirm that the combined presence of micro-/submicron-
scale roughness contributes to increased osteoblast response
[10, 11]. By altering only the surface microtopography and
without exogenous factors in media, osteoblast differentiation
can be increased on titanium surfaces [12]. This may be due
in part to the protein–material interaction at the surface, which
affects downstream cell response. Changes in the cytoskele-
ton, including integrin expression and signaling, have also
been implicated in this effect [13, 14].

Although dental implant success is achieved in over 95% of
healthy patients, certain risk factors still inhibit osseointegration.
Osseointegration rates for diabetics and smokers are reduced
tremendously [15, 16]. In addition, low bone density or osteo-
porosis most commonly seen in the increasing elderly popula-
tion can also decrease osseointegration. Most orthopedic
implants have a lifetime of only 12–15 years, requiring revision
surgery that can be fatal for older patients [5, 17]. These factors
contribute to the need for improving both osseointegration rates
and implant longevity. Therefore, there is an existing need for
implants that have the ability to increase bone formation and
enhance the regeneration process.

Titanium also has desirable mechanical properties due to
its low modulus of elasticity and high strength to weight ratio
[18]. However, solid titanium still exceeds the stiffness of
cortical bone by more than threefold, causing stress shielding
and bone loss downstream of the implant [19]. 3D porous
coatings and implants have been proposed to decrease stress
shielding via porosity-dependent mechanical properties and
increased bone interlocking, making these a promising treat-
ment for at risk patients or younger patients who need an
extended implant lifetime [20, 21].

Additive manufacturing techniques provide a layer-by-layer
approach to building porous or patient-specific implants that
have tailored macro structural and mechanical properties [22].

Selective laser sintering has the ability to create high resolution,
porous metal constructs with positive results in both in vitro and
in vivo studies [23]. There have been many studies that observe
the effect of controlled porosity on in vitro or in vivo response.
However, porosity in these studies was created using homo-
geneous strut and pore sizing, without a biological template and
with limited surface modification [23–26]. Trabecular bone in
the human body does not have the same pore shape, size or
surface roughness. In studies where surface modification was
used to induce micro-roughness, bulk porosity was limited to a
user designed template [27, 28]. Thus far, the combination of
macro structural parameters integrated with micro-scale surface
treatment has not been studied. The purpose of this study was to
replace the traditional man-made structural template with a
biological template.

In this study, we used human trabecular bone as a tem-
plate to laser sinter Ti6Al4V with varying porosity, and
additionally modified the surfaces to obtain a combined
micro-/nano-roughness. The resulting constructs were char-
acterized for their surface, structural and mechanical proper-
ties. Cellular response to constructs with varying porosity was
also performed, with the hypothesis that osteoblast response
would increase on 3D constructs with increasing porosity.

2. Materials and methods

2.1. Manufacturing

2.1.1. Material manufacturing. A computed tomographic (CT)
scan was taken of a human femoral head retrieved from a hip
replacement (μCT 40, Scanco Medical, Bassersdorf,
Switzerland) with a 16 μm voxel size. A template was created
using Scanco software (Scanco Medical, Bassersdorf,
Switzerland) and rotated and superimposed on itself 12, 24, or
36 times to create constructs with low (3DLP), medium (3DMP)
and high porosity (3DHP), respectively (figure 1(A)). Generated
3D renderings were manufactured into Ti6Al4V disks 15mm in
diameter and 5mm in height. Each disk included a 1mm solid
base upon which the remaining porous material was sintered in
order to ensure mechanical stability during sintering. 2D surfaces
were 15mm in diameter and 1mm in height (figure 1(B)). Laser
sintering was performed using an Ytterbium fiber laser system
(EOS, EmbH Munchen, Germany) with Ti6Al4V (grade 5)
particles 25–45 um in diameter (Advanced Powders & Coatings,
Quebec, Canada). Laser scanning speed was 7m s−1 with a
wavelength of 1054 nm, continuous power of 200W and laser
spot size of 0.1 mm.

2.1.2. Surface modification. After manufacturing, disks were
blasted with calcium phosphate particles using proprietary
technology (AB Dental, Ashdod, Israel) and then acid etched
by ultrasonicating in 0.3 N nitric acid (HNO3) once for five
minutes at 45 °C and twice for five minutes at 25 °C. Disks
were rinsed in 97% methanol for five minutes. Final pickling
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treatment was performed by ultrasonicating disks thrice for
10 min in ultrapure distilled water, immersing for 30 min in
1:1 20 g L−1 NaOH to 20 g L−1 H2O2 for 30 min at 80 °C and
ultrasonicating in water for 10 min. Constructs were then
placed in a degreaser for 12 min, immersed in 65% aqueous
HNO3, and ultrasonicated thrice in water for 10 min. Surfaces
were blotted with lint free tissue and allowed to dry for at
least 24 h in order to stabilize the oxide layer before
characterization and cell culture.

2.2. Material characterization

2.2.1. Surface chemistry. Surface chemistry was analyzed
using x-ray photoelectron spectroscopy (XPS, K-Alpha,
ThermoFisher Scientific, Boston, MA). Samples were

transferred to the analysis chamber at a pressure of 1e-
8 mbar. An XR5 gun was used with a 500 μm spot size at
15 kV to perform survey scans with 20 ms dwelling time and
1 eV energy step size. Bulk chemistry was analyzed using
energy dispersive x-ray spectroscopy (EDX, Hitachi SU-70,
Tokyo, Japan).

2.2.2. Contact angle. Sessile drop contact angle was used to
assess surface energy and surface wettability (Ramé-Hart
goniometer, Succasunna, NJ). 2D solid laser sintered surfaces
that received the same post-processing treatment as 3D
constructs (figures 2(E), (F)) were used as a proxy for contact
angle measurements due to difficulty in obtaining accurate
contact angle measurements for porous constructs. 4 μl drops
of distilled water were deposited on five predetermined

Figure 1. (Left to right) laser sintered disks were created from a CT scan conducted of human trabecular bone from the femoral head after a
hip replacement. Original CT scans showing bone porosity through transverse and axial cross sections were used as a template for porous,
laser sintered disks (A). Top-down camera images and micro CT cross sections of laser sintered 3D disks with (from left to right) low,
medium and high porosity (B). Total porosity was calculated using a traditional method based on mass (C). Total and open porosity was
calculated with micro CT (D). 1 Way ANOVA with Bonferroni’s correction was performed separately for total porosity or open porosity.
p< 0.05 is indicated by * versus 3DLP and ^ versus 3DMP. Unpair ^ porosity showed no significance between groups.
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locations per disk, with two disks per group (n= 10). Videos
of these drops were taken and still images were used in
conjunction with DROPimage software (Ramé-Hart
goniometer, Succasunna, NJ) to determine the average left
and right contact angle of each drop.

2.2.3. Surface topography. Surface topography was
qualitatively assessed using scanning electron microscopy
(SEM, Hitachi SU-70, Tokyo, Japan). Disks were secured on
imaging stubs with carbon tape and imaged with 56 μA ion
current, 4 kV accelerating voltage and 4 mm working

distance. Three locations per disk were imaged to ensure
homogeneous assessment, with at least two disks per group
imaged.

2.2.4. Roughness. Macro-and micro-roughness were
analyzed with confocal laser microscopy (LEXT OLS4000,
Olympus, Center Valley, PA). Macro roughness was analyzed
with a 10× objective, and micro-roughness was analyzed with
a 20× objective and additional 5× optical zoom. After a three
point correction, a cutoff wavelength of 100 μm was used to
analyze average roughness (Ra) and surface area.

Figure 2. SEM images of (columns from left to right) 2D, 3D low, medium and high porosity disks. Low magnification images showing
trabecular structure after production (A), after blasting and acid etching (B), and after picking (C). High magnification images showing
smooth surfaces after production (B), micro-roughness after blasting and acid etching (D), and nano-roughness after pickling (F).
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2.2.5. Porosity. 3D constructs were analyzed for porosity
using micro-computed tomography (micro CT) (SkyScan
1173, Micro Photonics, Allentown, PA). A volume of interest
of 469 mm3, or approximately 66% of each construct’s porous
volume, was analyzed for total percent porosity, open
porosity, pore diameter, strut size, and surface area to
volume (SA/V) ratio. Scans were taken using an Al 1.0 mm
filter, 100 kV voltage, 80 μA current, 1120 × 1120 camera
pixels, 0.2° rotation step, frame averaging of 10, and random
movement of 10. Post-processing included a global threshold
of 100–255 and despeckling black and white speckles less
than 10 voxels. We verified the validity of micro CT analysis
by comparison of total porosity analyzed through a traditional
method based on size and mass (figure 1(C)).

2.2.6. Mechanical testing. Compressive moduli of 3D
constructs were determined using the MTS Insight 30
testing machine (MTS Systems, Minnesota, USA). A pre-
load of 0.01 kN was applied at 0.025 mm s−1, then a test speed
of 0.02 mm s−1 was used until failure or the maximum load of
30 kN was applied. Data acquisition rate was 500 Hz, and the
compressive modulus was taken as the slope output of the
resulting stress/strain curve. Testing was performed on 6
constructs per group (total n= 6).

2.3. Biological response

2.3.1. Cell viability. The MG63 human osteoblast-like cell
line was used as a model for osteoblast viability, proliferation
and differentiation on sintered surfaces. These cells have been
characterized and have been used as a model for osteoblast
response to titanium surfaces with varying topography
[29, 30]. Surfaces were sterilized in UV for 20 min in a
biosafety cabinet prior to cell culture. Cells were cultured in
tissue culture polystyrene (TCPS) flasks until confluence,
then centrifuged and resuspended to yield a plating density of
30 000 cells per cm2 on TCPS, or 60 000 cells per surface in a
24-well plate. Dulbecco’s modified Eagle medium (DMEM)
with 10% fetal bovine serum (FBS) and 1% penicillin/
streptomycin was used to feed cells 24 h after plating and treat
at confluence according to the TCPS control. 24 h after
confluence, cells were treated with 5 μM calcein-AM and
4 μM ethidium homodimer-1 (LIVE/DEAD, Life
Technologies, California, USA) in 1× Dulbecco’s phosphate
buffered saline (D-PBS, Life Technologies) for 20 min.
Surfaces were imaged using the Zeiss LSM 710 confocal
microscope (Zeiss, Oberkochen, Germany). Individual
images were taken of 2D disks, while 550 um z-stacks were
taken of 3D disks. Green (live) and red (dead) channel
thresholds were optimized for each group in order to better
distinguish cells. Three images were analyzed and averaged
per z-stack, with at least n= 6 total areas (z-stacks) analyzed
for at least two constructs per group (total n= 12).

2.3.2. Osteoblast proliferation and maturation. Surfaces were
gamma irradiated prior to cell culture. MG63 cells were
cultured as described above. Medium was changed at
confluence, and cells were harvested 24 h after confluence,

rinsed twice with 1xPBS, then stored at −20 °C overnight for
biological assays. Cell lysate was assayed for DNA content
(P7589, Invitrogen) and total protein content (23225, Pierce).
Alkaline phosphatase specific activity was measured as a
function of p-nitrophenol production from p-
nitrophenylphosphate at pH 10.2 and normalized to total
protein. Medium was assayed for osteocalcin (OCN, BT-480,
Biomedical Technologies), VEGF (DY293B, R&D Systems),
OPG (DY805, R&D Systems), BMP2 (900-K255,
PeproTech) and BMP4 (DY 314, R&D Systems). Data
were normalized to total DNA content. Experiments were
performed at least twice to ensure validity of the results.

2.3.3. Sample preparation for scanning electron microscopy.
One disk from each group was UV-treated for 20 min in a
biological hood and plated with 60 000 MG63 cells and
cultured as described above. Media were changed at
confluence, and cells were fixed 24 h after confluence with
4% paraformaldehyde (electron microscopy sciences).
Constructs were rinsed three times in 1×PBS, then
dehydrated in a series of increasing ethanol concentrations:
15%, 30%, and 45% for two hours, then 60%, 75%, 90% and
thrice in 100% for at least one hour. Samples were then
exchanged in 1:1 100% ethanol and hexamethyldisilazane
(HMDS, Sigma Aldrich) for 30 min in a chemical safety
hood, then twice in 100% HMDS for 30 min. Samples were
dried 24 h in a desiccator before being platinum sputtered and
imaged with SEM as described above (Hitachi SU-70, Tokyo,
Japan).

2.4. Statistical analysis

Surface characterization data are presented as mean ± one
standard deviation (SD) of all measurements performed
across samples in the same group. Cell viability is presented
as the mean of all measurements performed across samples in
the same group. Cell proliferation and differentiation data are
presented as mean ± standard error of the mean (SEM) for six
independent cultures. All experiments were repeated at least
twice to ensure validity of observations, with results from
individual experiments shown. Statistical analysis among
groups was performed by analysis of variance, and significant
differences between groups were compared using Bonferro-
ni’s modification of Student’s t-test. A p value of less than
0.05 was considered statistically significant.

3. Results

3.1. Surface characterization

Laser sintered 3DLP, 3DMP and 3DHP constructs had
16.2 ± 2.9%, 38.5 ± 3.9%, and 70.0 ± 3.5% total porosity and
15.0 ± 2.9%, 37.9 ± 4.0%, 70.0 ± 3.5% open porosity,
respectively (table 1). Total porosity and open porosity were
not significantly different, showing complete inter-
connectivity between pores (figure 1(D)). Average pore dia-
meter was 177 ± 22 μm for 3DLP, 383 ± 15 μm for 3DMP and
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653 ± 22 μm for 3DHP constructs. Average strut thickness
was 628 ± 150 μm for 3DLP, 454 ± 57 μm for 3DMP and
305 ± 26 μm for 3DHP. The ratio between the analyzed con-
struct surface area to volume ratio was 23.5 ± 7.4 for 3DLP,
36.1 ± 5.4 for 3DMP, and 56.9 ± 5.8 for 3DHP disks. For all
porosity parameters (total porosity, open porosity, pore dia-
meter, strut thickness and SA/V ratio), all groups were sig-
nificantly different from each other. Pore diameter, strut
thickness and SA/V ratio all increased with increasing con-
struct porosity.

Surface chemistry performed by XPS showed mostly C,
O and Ti in the oxide layer, with small amounts of N, P and
Ca due to processing, and Al present on 2D surfaces (table 2).
EDX allows for higher penetration past the oxide layer and
showed Ti, Al and V as the bulk surface composition, with a
small amount of C present on 3DLP surfaces (table 3).
Contact angle of 2D proxy surfaces was 92 degrees with a
standard deviation of eight degrees. Compressive modulus
decreased in a porosity-dependent manner (table 4). 3DLP
had a modulus of 3693 ± 27, 3DMP a modulus of
3522 ± 52MPa and 3DHP a modulus of 2579 ± 106MPa.

After manufacturing the surfaces had a very grainy
topography at the macro scale, but smooth topography at the
micro scale (figures 2(A), (B)). Blasting and acid etching
induced micro roughness on surfaces while maintaining
macro structure (figures 2(C), (D)). Pickling overlaid fine and

homogenous nanofeatures on the macro surface (figures 2(E),
(F)). Cross sectional, low magnification SEM images show
internal pore surfaces looking similar to pretreated constructs,
indicating the inability of grit blasting treatment to affect
internal construct pores (figure 3). Surface roughness results
revealed increasing surface roughness and area at the macro
level for increasing porosity (figures 4(A), (B)). Surface micro
roughness showed no difference between groups except an
elevation in 3DHP surfaces, and no difference between
groups for surface area at the micro level (figures 4(C), (D)).

3.2. Biological response

Live/dead analysis indicated that cells on all surfaces had high
viability. No significant differences in osteoblast viability
were observed across constructs with varying porosity
(figure 5(A)). 2D surfaces had the highest percent viability at
99.9%. 3DLP, 3DMP and 3DHP constructs had 94.9%,
98.1% and 91.6% cell viability, respectively. Representative
SEM micrographs of cells cultured on disks showed cells
spread evenly across surfaces (figure 5(B)).

DNA was highest on TCPS and decreased as porosity
increased (figure 6(A)). ALP, a marker of early osteoblastic
differentiation, was elevated on 3DLP compared to TCPS,
then decreased on 3DMP and 3DHP compared to 3DLP, and
decreased significantly on 3DHP compared to TCPS
(figure 6(B)). OCN increased significantly on 3DHP com-
pared to TCPS (figure 6(C)). OPG increased on 3DMP and
3DHP compared to TCPS and 3DLP, and was also

Table 1. Porosity parameters.

Porosity parameters (average ± SD)

Total porosity (%) Open porosity (%) Pore diameter (μm) Strut thickness (μm) SA/V Ratio

3DLP 16.2 ± 2.9 15.0 ± 2.9 177 ± 22 628 ± 150 23.5 ± 7.4
3DMP 38.5 ± 3.9 (*) 37.9 ± 4.0 (*) 383 ± 15 (*) 454 ± 57 (*) 36.1 ± 5.4 (*)
3DHP 70.0 ± 3.5 (*^) 70.0 ± 3.5 (*^) 653 ± 22 (*^) 305 ± 26 (*^) 56.9 ± 5.8 (*^)

Significance * versus LP, ^ versus MP p< 0.05.

Table 2. Surface chemistry (XPS): elemental composition.

Element (atomic % average ± SD)

O C Ti N P Ca Al

2D 41.6 ± 3.7 41.8 ± 5.4 12.6 ± 1.5 1.3 ± 0.6 — — 2.5 ± 0.5
3D-LP 44.9 ± 4.4 36.6 ± 7.9 6.3 ± 1.7 5.6 ± 1.5 3.3 ± 3.9 2.6 ± 1.9 —

3D-MP 54.5 ± 1.9 20.5 ± 20.4 6.9 ± 1.7 4.9 ± 0.9 9.7 ± 1.6 3.6 ± 1.0 —

3D-HP 51.7 ± 3.1 29.5 ± 2.8 13.4 ± 1.1 3.2 ± 0.8 1.6 ± 1.8 — —

Does not include trace elements less than 1%.

Table 3. Surface chemistry (EDX): elemental composition.

Element (weight % average ± SD)

Ti Al V C

2D 89.8 ± 0.6 7.1 ± 0.8 3.1 ± 0.2 —

3D-LP 87.3 ± 4.7 6.7 ± 1.6 3.0 ± 0.2 2.4 ± 3.8
3D-MP 88.9 ± 2.2 7.0 ± 1.1 3.1 ± 0.2 —

3D-HP 89.0 ± 1.8 7.5 ± 1.4 3.2 ± 0.2 —

Does not include trace elements less than 1%.

Table 4. Compressive modulus (MPa).

Compressive modulus (average MPa ± SD)

3D-LP 3693 ± 27
3D-MP 3522 ± 52 (*)
3D-HP 2579 ± 106 (*^)

Significance p < 0.05. * versus LP, ^ versus MP.
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significantly higher on 3DHP compared to 3DMP
(figure 6(D)). BMP2 on 3DLP, 3DMP and 3DHP was sig-
nificantly higher than on TCPS, and 3DMP and 3DHP con-
structs had higher BMP2 levels compared to 3DLP

(figure 6(E)). BMP4 was elevated on 3DHP compared to
TCPS only (figure 6(F)). VEGF was elevated on 3DMP and
3DHP compared to TCPS and 3DLP, and was also sig-
nificantly higher on 3DHP compared to 3DMP (figure 6(G)).

Figure 3. Cross sectional SEM images of 3DLP (A); 3DMP (B); and 3DHP (C) constructs. An enlarged image of 3DHP (D) shows an
absence of surface roughness induced by grit blasting.

Figure 4. Macro surface roughness (A), macro surface area (B), micro surface roughness (C) and micro surface area (D) analyzed with laser
confocal microscopy. 1 way ANOVA with Bonferroni’s correction shows significance of p< 0.05 for * versus 3DLP and ^ versus 3DMP.
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4. Discussion

Increased implant failure due to lack of osseointegration is a
problem in compromised patients, which creates the need for
better bone integration and mechanical properties of Ti and Ti
alloy implants [16]. Although studies have pointed toward 3D
porous implants as a possible solution, these surfaces have not
been optimized for porosity or combined with desired surface
roughness features.

Various additive manufacturing methods such as direct
beam melting and laser sintering have come to the forefront of
customized and porous implant manufacturing. The sintering
system we use in this study has a theoretical resolution of 100
microns according to the laser size; however, limited studies
have been performed on the homogeneity of laser strength
within that diameter. Scan speed and wavelength can all have
an effect on the manufactured structure’s density and there-
fore mechanical properties, but with higher resolution comes
increased time of production.

Previous studies have observed increased sintering den-
sity of over 97% with decreasing scan speeds to 50 mm s−1

[24]. Our qualitative evaluations using SEM and quantitative
analysis using micro CT point toward a close approximation
of our construct structure with that of human trabecular bone,
even at high density. Although the optimal pore diameter for
porous implants has been debated in literature, most studies
observe increased cell infiltration or bone ingrowth for pores
larger than 100 μm in diameter [31–33]. Pore sizes of 200–-
400 μm have been thought to increase osteoblast attachment,
migration and proliferation via activation of mechan-
oreceptors [34]. We observed pore sizes upwards of 300 μm

in our disks, which has been suggested as a minimum for new
bone and capillary formation [33]. Pore diameter has been
suggested to have higher influence on bone ingrowth when
compared to total percent porosity alone, although we were
not able to isolate these two variables in our constructs [35].

Similar processing methods have previously been shown
to successfully manufacture surfaces with stable mechanical
properties and good in vitro results [27]. The effect of
roughness at both the micro-and nano-scales on osteoblast
differentiation has been well documented [10, 29, 36], and
our results show that traditional methods such as blasting and
acid etching are effective at inducing a homogeneous com-
bined micro-/nano-roughness on additively manufactured
surfaces. Due to the high interconnectivity between pores,
acid treatment and pickling solutions were able to access the
entire surface area of constructs to create a unique, homo-
genous nanostructured surface. However, our results show
that blasting was not able to significantly alter the internal
pores of the constructs. Despite this, cell response still
increased significantly for high porosity constructs, suggest-
ing that macro-structural effects of 3D porous constructs may
play a larger role in cell response compared to surface
roughness alone.

Human trabecular bone from the mandible has a porosity
range of 70–90%, which varies with location and patient
factors [37–39]. In this study, we created porous structures
ranging from 20–70% to determine the optimal percent por-
osity for cells. Our compressive moduli decrease with
increasing porosity, which has been corroborated for both
synthetic constructs and human bone [20, 38]. Compressive
testing on human trabecular bone has shown a compressive

Figure 5. MG63 cell viability (live = green, dead = red) after culturing until confluence on TCPS (A). No differences were found among
groups using 1 way ANOVA with Bonferroni’s correction, p< 0.05. SEM micrographs revealing well-spread cell morphology on
surfaces (B).
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modulus of 1.08 GPa [40]. A study encompassing 160 human
trabecular bone samples with compressive moduli ranging
from approximately 300–900MPa showed that bone-volume
fraction (density), surface-to-volume ratio, trabecular thick-
ness (strut thickness) and spacing (pore diameter) all

contributed significantly to differences in mechanical prop-
erties [41]. The direction of loading can also impact
mechanical output, which is especially true due to the ani-
sotropic properties of bone [25]. In this study, we performed
testing on porous constructs with a 1 mm solid base, which

Figure 6.MG63 cell response to laser sintered, porous surfaces 24 h after confluence. DNA content (A), alkaline phosphatase specific activity
(B), osteocalcin (C), osteoprotegerin (D), bone morphogenetic protein 2 (E), bone morphogenetic protein 4 (F), and vascular endothelial
growth factor (G). Significance determined with 1 way ANOVA with Bonferroni’s post-correction, p< 0.05 for * versus TCPS, ^ versus 2D,
# versus 3DLP and $ versus 3D-MP.
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may have contributed to a higher modulus than just the por-
ous component alone.

Surface chemistry of disks with varying porosity con-
tained mainly elements of Ti, O and C, although bulk
chemistry confirmed the presence of Ti, Al and V in the alloy.
Previous surface analysis of Ti6Al4V surfaces has also shown
the presence of Al in the oxide layer, which may have been
masked by Ca and P after blasting [42]. Contact angle on 2D
proxy surfaces was neither super-hydrophilic nor hydro-
phobic. These 2D surfaces underwent the same surface
treatment as 3D constructs, although the effect of strut cur-
vature and differences in internal surface roughness on
wettability for 3D constructs could not be determined. Surface
roughness and area at the micro level were not different
among groups except for an elevated roughness on 3DHP,
which may have been due to the decreased strut thickness and
increased curvature at sites of analysis.

Cell viability was high and not significantly different
among surfaces. A qualitative observation of a decrease in
cell number with increasing porous constructs suggests that
cells had infiltrated pores and distributed over a larger surface
area. Previous studies on additively manufactured porous
surfaces also showed high cell viability and cell infiltration
into pores [43], which were confirmed by our SEM images.
We assume high cell viability exists for cells that have infil-
trated to the pores; however, we were not able to visualize all
the way to the bottom of the disks to fully verify cell infil-
tration. Viability results were limited to the first 550 μm, a
limitation of the imaging equipment.

The decrease in ALP specific activity and the increase in
OCN point toward a porosity-dependent maturation response.
Previous reports of ALP activity on roughened surfaces noted
a significant difference in cell layer activity versus isolated
cells, suggesting increased matrix vesicle production [44].
These results also correspond to the decreased DNA content
on 3DHP constructs, indicating a preference toward osteo-
blast maturation instead of proliferation. OPG, a decoy
receptor for RANKL and involved in the bone remodeling
process, was increased on 3DMP and 3DHP constructs. This
increase in OPG blocks osteoclast differentiation in a pro-
tective effect to enhance bone growth, and has been impli-
cated in osteoblast-osteoclast communication [45]. An
increase of BMP2 and BMP4, especially on 3DHP surfaces,
corroborates previous studies that observe increased BMP
production on constructs with 300–400 μm pore diameters
[46]. Although our pore diameters are larger, the irregular
porosity of trabecular bone may contribute differently to local
factor production than in other studies with user-defined
geometries. The increase of BMP local factor production
indicates that our porous constructs have the potential to
regulate the induction of bone inside the construct, as well as
induce bone distally. The increased levels of VEGF on 3DHP
constructs also point toward this trend, indicating that highly
porous constructs of trabecular bone structure are inductive
for blood vessel formation as part of supporting new bone
formation and bone regeneration.

As percent porosity increased, so did the surface area to
volume ratio, indicating an increased surface area for cell

interaction. It has previously been shown that rough titanium
surfaces enhance osteoblastic differentiation and increase
local factor production, so the increased cell response in this
study may well be attributed to the varying material properties
of our surface [30]. In this study, the combination of the three
dimensional macro-structure, increase in surface area and
combined micro-/nano-surface modification enhanced the
osteoblast phenotype. Increased curvature on 3D surfaces
with higher porosity may exert higher mechanical forces on a
cell, which has been shown to direct cells toward osteoblast
differentiation [47]. This response could be mediated by cell-
surface integrin proteins. In particular, α5 has been implicated
in osteoblast attachment and proliferation, and α2β1 in
osteoblast morphology and differentiation via its binding to
collagen in the extracellular matrix [13, 48].

The role of confluence may contribute to cell response,
and has been previously discussed with regard to TCPS
versus rough titanium surfaces [49]. Although decreased
DNA was shown on Ti6Al4V surfaces compared to TCPS
controls, previous studies on pre-confluent cultures have also
shown a different maturation profile of osteoblasts on the Ti
alloy surfaces compared to TCPS, suggesting that our
resulting cell response was also surface specific and not
confluence dependent [34].

Increased bone growth in response to additively manu-
factured implants has been shown in various animal models,
including rats and sheep [28, 50]. Previous work has shown
highest calcium content and in vivo response to materials with
75% porosity compared to higher porosities [51]. Further
work in an animal model will be essential to assess the suc-
cess of bone growth into individual pores and osseointegra-
tion capability of the entire porous construct.

5. Conclusion

In this study, we used additive manufacturing to produce
Ti6Al4V materials with varying porosity that structurally
mimicked human trabecular bone, and further created a desirable
surface for osteoblasts by inducing combined micro-/nano-
roughness. Our results indicate that a high porosity construct
mimicking trabecular bone structure is capable of stimulating
osteoblast differentiation when compared to 2D and low por-
osity constructs. Additive manufacturing is a scalable manu-
facturing method that has the potential to create structurally
complex, patient-specific orthopedic and dental implants and
scaffolds for increased osseointegration. Although trabecular
orientation may vary across individuals and locations in the
body, this study suggests that osteoblast cells actually do prefer
one type of porosity and structure. In addition, this study reveals
the possibility for creating patient-specific implants, which may
accelerate the fields of dental and orthopedic implants.
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